JOURNAL OF
PURE AND
APPLIED ALGEBRA

ELSEVIER Journal of Pure and Applied Algebra 122 (1997) 107-126

Curves and proximity on rational surface
singularities

Ana-José Reguera!

Departamento de Algebra y Geometria, Facultad de Ciencias, Universidad de Valladolid,
47005 Valladolid, Spain

Communicated by M.-F. Roy; received 7 February 1995; revised 30 June 1995

Abstract

We study the germs of curves in a rational surface singularity (S, P) from the point of view
of proximity, classifying them up to a notion of equisingularity. We introduce the concept of
cluster of infinitely near points and we use it to generalize the Hoskin—Deligne formula, and to
give an algorithm to describe a minimal system of generators of a complete ideal in the local
ring Osp. (© 1997 Elsevier Science B.V.

1991 Math. Subj. Class.: 14117, 14H20

0. Introduction

In order to classify the irreducible plane curve singularities, several invariants have
been introduced such as characteristic pairs, multiplicity sequence, value semigroup, etc.
In fact, a geometric approach, based on the idea of proximity, was already developed by
Enriques in [8] (1915). Recently, this notion of proximity has been applied in [4, 15, 3].
In this paper, we study the germs of curves embedded in a rational surface singularity
from the point of view of proximity.

We classify the germs of reduced curves in a rational surface singularity (S, P) up
to a notion of equisingularity which generalizes the equisingularity of germs of plane
curves. The equisingularity class of such a germ of curve C in (S,P) consists of
the weighted dual graph of the minimal embedded desingularization of C in (S,P),
together with some weighted arrows corresponding to the branches of C. We express
this combinatorial object in terms of some invariants of the singularity (S,P) and the
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curve C, namely, the proximity matrix (Definition 1.4), the intersection matrix in terms
of total transforms (1.12) and the orders of C (Definition 1.6). After discussing these
invariants in Section 1, we prove that the equisingularity class of C in (S, P) determines
the equiresolution class of C (Theorem 2.10). We give an example to show that the
converse is not true.

The idea of studing families of Cartier and Weil divisors on (S, P) going through a
finite set of points infinitely near P with assigned orders is developed in Section 3. We
introduce the notion of cluster with origin at P and generalize the geometric theory
of Enriques to rational surface singularities. When we deal with families of Cartier
divisors, this allows us to identify the m-primary complete ideals of the local ring
O p with some specific clusters: the Cartier clusters. Using this characterization, we
generalize to rational surface singularities the formula given by Hoskin and Deligne
[10,6]. This formula computes the minimal number of generators u(f/) of any m-
primary complete ideal 7 In particular, we observe that, as it happens in the nonsingular
case, p(I) only depends on the orders at the origin of the cluster associated to /. Finally,
as another application of the notion of cluster, we give an algorithm to describe a
minimal system of generators of I, generalizing to rational surface singularities the
procedure given by Casas [5].

1. Constellations of points infinitely near the point P of the rational surface
singularity (S, P)

In this section, after recalling the basic properties of rational surface singularities
that will be used further, we introduce some definitions and notations and prove some
preliminary results. Throughout this paper, a surface singularity is a pair (S,P) con-
sisting of the spectrum § = Spec R of a noetherian normal complete two-dimensional
local ring R containing an algebraically closed field k isomorphic to its residue field,
and the closed point P of §.

1.1. Recall that a surface singularity (S, P) is said to be a rational surface singularity
if there exists a desingularization p : X — S such that the stalk at P of R'p, 0y is zero.
Moreover, one can prove that any desingularization p: X — § of (S,P) is a product
of blowing ups centered at closed points, and the stalk at P of R! p, 0y is zero. In
particular, if P is nonsingular, then (S, P) is a rational surface singularity.

The following properties hold for a rational surface singularity (S, P):

(a) For any Weil divisor C on (S,P) there exists an integer » such that »C is a
Cartier divisor on (S, P).

(b) Let p: X — S be a desingularization of (S,P) and let {E;}?_, be the irreducible
components of the exceptional locus of p. If D is a divisor on X with D.E; = 0 for
all i, then there exists an element 4 in the maximal ideal of Osp such that ()* = D,
where (h)* is the total transform on X of the divisor given by 4 on (S, P).
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A proof of those results may be found in [1,2, 14].

1.2. Definition. Let (S,P) be a rational surface singularity. The closed points in the
exceptional locus of the blowing up n; of P are called points in the first infinites-
imal neighbourhood of P. For i > 1, we define inductively the points in the ith
infinitesimal neighbourhood of P to be the closed points in the (i — 1)th infinitesi-
mal neighbourhood of some point in the first infinitesimal neighbourhood of P. The
points in some infinitesimal neighbourhood of P are called points infinitely near P
(see [8]).

A constellation € of points infinitely near P (or constellation with origin at P)
is a finite set of points infinitely near P containing P and every point preceding
a point in %, ie. if Q € ¥ and Q is infinitely near a closed point R, then
Re 4.

1.3. We may label the points in €, say € = {P,..., By}, in such a way that P, = P
and if P; is infinitely near P, then j > i. In this way, we get a sequence of point
blowing ups
T Ty —1 T i

S¢ =Sy —— 81— — 51 >S5 =S, (1
where 7; is the blowing up with center P; and ngy = my 0 - o m,,. We also denote ©
for g when no confusion is likely. Observe that the isomorphism class of the surface
S¢ over S does not depend on the choice of the labelling of ¢ with the previous
property. Throughout this paper, we will consider constellations 4 such that my is a
desingularization of (§,P). It follows from 1.1 that constellations of points infinitely
near P and desingularizations of (S, P) are equivalent data. The constellation %, such
that 7, is the minimal desingularization of (S, P) is called the minimal constellation
for (S, P).

In the above situation, we denote by EY,...,El the irreducible components of the
exceptional locus of m; (the upper i means that they are divisors on S;), E}, may not
be a Cartier divisor on §; but it is a Weil divisor. For j > i, let E/, (resp. E;/) be the
strict transform (resp. the total transform in the sense of Mumford [16]) of E} in S;
and, for simplicity, denote Ej for E7 and El’}‘c for E;". Therefore, Ej is an irreducible
component of the exceptional locus of 7 and Ej} is a Q-Cartier divisor on S¢. We call
Ag, or simply A = {(;,k)/ 1 <i<m, | <k <s}, the set of indices of the irreducible
components of the exceptional locus of 7.

Observe that the Q-vector space N'(S¢/S) = (Pic(S¢)/ =) ® Q (where Pic(S¢)
denotes the Picard group of S¢ and = is the numerical equivalence relation D = 0 if
D.E, = 0 for any exceptional curve E, in S¢) is E¢ 1= ©,c4QE, = ©,e4QE;". This
follows immediately from the fact that the intersection matrix (E,.Eg), g4 is negative
definite.

We can consider total orders in the set of indices A4 compatible with the labelling
in € in the sense that (i,k) < (i, k") whenever i < i’, for any k, k'. These total orders
will be called enumerations of A.
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1.4, Definition. Let ¥ be a constellation with origin at the point P of the rational
surface singularity (S,P) and let @ be an enumeration of the set of indices 4 of the
irreducible components of the exceptional locus of m¢. We define the proximity matrix
of % with respect to w to be the matrix My, of the change of basis from {E}, to
{E,},. That is,

Mgo,E* =E )

where by E and E* we denote the column vectors consisting of the E,’s and E;" ’s
ordered by . We denote M for My, when no confusion is likely.

1.5. Remark. If (S,P) is nonsingular, the above matrix has been introduced by Du
Val [7]. In this case, each point in & gives rise to a unique irreducible component
E; of the exceptional locus of mg, that is, the cardinal of 4 is equal to the num-
ber of points in . Fixed a labelling on the points in %, say € = {Pi,...,Pn},
we have E; = Ef — ZpijEJ’-k where p; = 1 if i < j and P, € E{, and p; =
0 otherwise. Following Enriques terminology, the relation P, — P if P, € E{ is
called proximity relation. If we denote by Pr the upper triangular matrix (p;;);; then
the proximity matrix is M = Id — Pr and hence, it only depends on the proximity
relations.

We now analyse the structure of the proximity matrix. To do so we introduce some
definition and prove a preliminary result.

1.6. Definition. Let C be an effective Weil divisor on the rational surface singular-
ity (S,P) and ¥ = {P,,...,P,} a constellation with origin at P. Let E, be an irre-
ducible component of the exceptional locus of mg obtained by the blowing up of P,
ie. y = (i,k) for some k (1 < k <'s;), and v, the valuation of the function field
K(S) induced by E,. Then, the strict transform C'™! of C on the surface Si—1 is a
Q-Cartier divisor and hence, €,(C) := vy(fifl) is a well-defined rational number. The
rational numbers {e, = €,(C)},c4 are called the effective orders (or orders) of C
iné.

Note that, in particular, if (S,P) is nonsingular, C is a curve on (S,P) and ¢ =
{P1,...,Py,} a constellation with origin at P, then, for 1 <i<m, e; = v;(E'_l) is the
multiplicity of C' ' at P.

1.7. Proposition. Ler C be an effective Weil divisor on (S,P) and € a constellation
with origin at P. Let C* and C be, respectively, the total and strict transform of C
by n¢ and {e,}, the orders of C in 4. Then,

C* =T+ eE} 3)

Proof. First, suppose that C is a Cartier divisor on (S,P) and take % € Ogp defining
C in (S, P). Then, the total transform C*' of C in S| is the Cartier divisor on S| given
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by # and

S|
* —l *
C*'=C +> vi(C)EN. )
k=1

If C is not a Cartier divisor, there exists » € N such that »C is a Cartier divisor
and hence, the above equality still holds. To complete the proof it is enough to apply
induction on equality (4). O

1.8. Corollary. Let € be a constellation with origin at P and fix an enumeration
wof A For 1 <i<j<mletV, be the (s; x s;)-matrix of rational numbers
Vi = (ep(Ei )k and let V be the (n x n)-upper triangular matrix consisting of
(Vij)i<j and with zeroes elsewhere. Then, the proximity matrix is Mg, =1d — V.

Moreover, for i <j, if P; ¢ El7" then ej(EL) =0 for 1 <t <s;, ie. the kth row
of Vi; is zero. If P, € Ef " then ej(El,) # 0 for 1 <1t <, ie. all the elements of
the kth row of Vi; are nonzero.

Proof. First note that, from the proof of 1.7 it follows that equality (3) is also true for
a Weil divisor C on a surface S with rational singularities, instead of a rational surface
singularity (S,P). Now, to compute the matrix M = My, it suffices to apply (3) to
each Weil divisor El’fk defined on S;, that is, we suppose our surface S is S; and consider
the desingularization S¢ — S;. In this way, one has

Ey =Ej — Z Z e]t(Ezk)

J=i 1<e<s;

and the first assertion is proved. The second part of the corollary follows from the fact
that P; is the center in §;_; of the valuation vy, for | <t <s;. O

1.9. Definition. Given a constellation % with origin at P and two points F; and P; in
€, we say that P, is proximate to P;, and we denote it by P, — B (or simply j — i),
if either P; is in the first infinitesimal neighbourhood of P, or else P, lies on the strict
transform of the first infinitesimal neighbourhood of P;. That is, if a labelling in the
sense of 1.3 is given, say € = {P,,..., By}, then P; is proximate to P; if and only if
j>i and]f’,-EE{}c for some k£, 1 <k <s;.

To each constellation ¢ we associate a tree Jy, or simply 7, in the following way:
the vertices of 7 are in a one to one correspondence with the points in €, and the
edges with the pairs (P, ;) such that P; is in the first infinitesimal neighbourhood of
P,. We can also associate to € a tree with proximity relations 7., or 7 P. It consists
of 7, together with some additional dotted lines corresponding to the pairs (P, F})
whenever P; is proximate to P; but not in the first infinitesimal neighbourhood of 7.

1.10. Remark. If (S,P) is nonsingular, knowing the tree with proximity relations is
equivalent to knowing the proximity matrix. From Corollary 1.8 it follows that, in
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general, for a rational surface singularity the tree with proximity relations is obtained
from the proximity matrix, but this matrix contains more information.

We now discuss the structure of the intersection matrix Ag, = (E; E/’; )z, 8-

1.11. We embed the rational surface singularity (S,P) in a germ of smooth variety
(Y,P) by o:(S,P)— (Y,P) (recall that the dimension of Y can be taken to be r + 1,
where r is the multiplicity of (S,P), see [1]). We consider the sequence of point
blowing ups

T T — n n
Y¢ = Yp—— Ypu1 = 2ﬁYl lﬁYOZY

L] g

S6 = Sp—"0 Spoy D DS —H S =S

where o; is the embedding of S; in ¥; and m;,; is the blowing up with center ¢;(P;; ).
We denote by E: the exceptional divisor of ; (E! is isomorphic to P" if » 4 1 is the
dimension of Y'). There exist strictly positive integers pi for l <i<mand i <k <y
such that

o} (E)) = pnEly + - + pi Bl )

In fact, for each i, Z; =), PikE;/t is the fundamental cycle for the desingularization
S¢ — Si—1 of (S;_1,P;) (see [1, Theorem 4]) and thus, the integers {p,},c4, do not
depend on the embedding. The above relations give us some information about the
matrix A.

1.12. Proposition. Let € be a constellation with origin at P and fix an enumeration
w of Ag. If, for 1 < i < m, A; is the (s; X s;)-matrix of rational numbers A; =
(EX.EX)r, then Ag, is the symmetric matrix consisting of the boxes A; in the
diagonal and zeroes elsewhere.

Moreover, with the notation in (5), if(_;_)i)’ = (Pi1,- .-, Pis, ) then we have

(p)' i p = —multp(S;_1). (6)

In particular, if the point P, is nonsingular then s; =1 and A; = —1 and, if (S,P) is
nonsingular, then A = —1d.

Proof. The fundamental cycle Z; = Y, puEj for S¢ — Si—1 is equal to o(ES),
where Ef is the total transform of E! by the morphism Y4 — Y;. When i # j
we have Ef.Ef = 0 and hence, 0 = Z.Z; = Y, , pupji(Ej.E};). Since Ej}.E} is
nonnegative for i # j and all p, are strictly positive, whenever i # j we have
E}.E} = 0 and hence the first assertion is proved. Equality (6) follows from the
fact that the multiplicity of the rational surface singularity (S;—1,P;) at P; is —Z;.Z;
[1, Theorem 4]. O
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1.13. Remark. Equality (5) insures that Ef.S¢ = pyEj} + - - - + p;,Ejs . However, the
above assertion does not hold if we substitute the total transforms by the strict trans-
forms. That is why the basis {E] }, of E¢ ® Q plays an important role.

For example, let (S,P) be the rational double point of type Ds defined by x* +
xy* 4+ 2% = 0 in a neighbourhood of the point P = (0,0,0) in k> (where k is an alge-
braically closed field). Let 4, = {Pi = P, P>, P3,P4} be the constellation defining the
minimal desingularization of (S, P), where P, and P; are points in the first infinitesi-
mal neighbourhood of P; giving rise to the irreducible components £2,,E2, and E3 in
the respective point blowing ups, and P4 is the point of intersection E2, N E%,, which
defines only one irreducible component of the exceptional locus of ng,. Let € be the
constellation %, U {Ps} where Ps is a point in the first infinitesimal neighbourhood of
P, such that Ps ¢ %,,. If we consider the natural embedding of (S,P) in ¥ = k>, then
the strict transform E, of E! in Y¢ is given by E; = Ef — Ef — Ef — Ef — EZ and we
have E1.S¢ = 2Ef — E;, — E5, — EY — Ef — E. However, the strict transform E; of
E| by ng is E; = Ef — 3(Ej, + E3; + Ef + Ef) — EJ, and hence

E;.S¢ = 2F1 + E5 N

is different from pE, = 2E].

In fact, in the same way as in 1.2 and 1.9, we may define points infinitely near or
proximate to the point P viewed as points over the variety Y. In this way, the points
infinitely near P over S are exactly the points infinitely near P over ¥ which lie on
the corresponding strict transform of S. However, the notion of proximity is different
if we consider the points over S or over Y. For example, equality (7) insures that
every closed point Pg in Es — E; is a point proximate to P viewed as points over
the ambient space Y, but it is not proximate to P viewed as points over S. What we
always have is that proximity over S implies proximity over the ambient space, since
Epu--- UEjs, C IEj.S(g.

Given a constellation € with origin at the point P of the rational surface singularity
(S,P) and an enumeration @ of Ag, the intersection form on E¢ may be represented
by two different matrices: A, in terms of the total transforms {£)} and (E,.Ep).p
in terms of the strict transforms {E,}. Let us show the relationship between A, and
(Ex-Eg)ap-

1.14. Theorem. Le: € be a constellation with origin at P and w an enumeration of
Ag; then we have (Ey.Ep)yp = MgowAgoMy,,. Conversely, given any total order on
the set of irreducible components of the exceptional locus of ng, from the intersection
matrix (E,.Eg)y,p with respect to this order we can recover an enumeration @ and
we can compute the proximity matrix My, and the intersection matrix Agg,.

Proof. The first equality is clear from the definitions. Now, given the matrix (E,.Ep), g,
we can compute the fundamental cycle Z for the morphism 7, since Z is the minimal
cycle with exceptional support such that Z.E, < 0 for each y. Besides, Tjurina proved
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that Z.Eyx =0 for i 21,1 <k <s; and Z.Ey, # 0 for 1 <k <s; (see [19, Proposi-
tion 1.2]). Therefore, we can deduce which are the files of (£,.E3), s corresponding to
the irreducible components of the exceptional locus of ng defined by the blowing up
of P. Suppose these are the s; first files, then the (n—s)) % (n — 5] )-matrix obtained by
erasing the s, first files and columns of (E,.Eg), s defines a negative definite bilinear
form whose dual graph has as many connected components as points in the first in-
finitesimal neighbourhood of P are in &, that is, the space in which this bilinear form
is defined is decomposed as orthogonal sum of subspaces. By reiterating the above
process, we recover an enumeration @ of A¢ and we obtain the tree J¢ together with
the assignation to each vertex v; of J¢ the number s; of irreducible components of
the exceptional locus of ng¢ defined by the blowing up of the point P, corresponding
to ;.

Now, let us show how the proximity matrix M = Mg, = (mug),p is obtained
from this information. We have M = Id — V' where V is the upper triangular matrix
consisting of (¥};)i<; (see 1.8). Let us compute the {¥};}i<i<j<m in a recursive way.
We know that

* *
EY,=Epr— Y. maniokrs

i>ip, 1<s<s;

where {m, r).(.s)} is the unique solution of the system of equations defined by impos-
ing E} ,.E}, = 0 for i > iy, 1 <5 <s;. Thus, once we know {¥;;}i5;,, for i > io, we
can write E}; in terms of the E,’s and hence, the solutions of the preceding system
can be computed from the knowledge of (E,.Ep)s s.

Finally, the intersection matrix A = (E;.E}) can be obviously described in terms

of M and (E,.Ep)yp. In fact, A = M~V (E,.Ep)up(M)~!. O

1.15. Remark. From the preceding result it follows that, given a constellation ¥, the
integers {p,},c4, can be computed from the proximity and intersection matrices M and
A of € with respect to an enumeration w, or equivalently, from the matrix (E,.Eg), .
In fact, to obtain {pic};_, we just have to compute the fundamental cycle Z for ng
from the matrix (E,.Eg), p and express it in terms of the Ey* ’s by the change of basis
defined by M. For i > 2, the proximity and intersection matrices of the desingularization
S¢ — S;—1 can be computed in a recursive way from M and A and hence, applying
the above argument to the fundamental cycle Z; for S¢ — S;—;, we obtain the integers

{plk}ilzl .

2. Classification of curves in a rational surface singularity

In this section we extend the notion of equisingularity of germs of plane curves
to germs of curves on a rational surface singularity (S,P). We prove as main result
that if C and C’ are equisingular curves in (S,P) then they are equiresoluble, that
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is, the respective multiplicities of the strict transforms of the branches of C and C’
coincide.

2.1. Definition. Let C be a germ of reduced curve embedded in the rational surface
singularity (S, P). An embedded desingularization of C in (S, P) is a desingularization
n: X — S of (S,P) such that the strict transform C of C by = is nonsingular and
the support of the total transform C* has only normal crossings. By composing the
minimal desingularization 7, : S¢, — S of (S, P) with the minimal desingularization of
the support of the total transform of C on S¢,, we get an embedded desingularization 7
of C in (S, P) which is minimal in the sense that it satisfies the universal property. The
constellation ¥ with origin at P such that © = ng is called the minimal constellation
Jor C in (S, P).

2.2, Definition. Let C be a germ of reduced curve in (S, P) and let € be the minimal
constellation for C in (S, P). We define the equisingularity class of C in (S,P) to be
the combinatorial object consisting of the weighted dual graph of 7y together with,
for each y € Ay, an arrow with origin at the vertex corresponding to the divisor
E, weighted by the number d, of analytic irreducible components of C whose strict
transform intersects E,.

Given two germs C and C’ of reduced curves embedded in (S, P), we say that C
and C’ are equisingular in (S,P) if their respective equisingularity classes in (S, P)
coincide.

2.3. Definition, Let ¥ = {P,,...,P,} be the minimal constellation for C in (S, P) and
let {e,},c4, be the orders of C in 4. We define the minimal weighted tree J5(C)
of C in (S,P) to be the tree J¢ together with the weights (e;1,...,e;,) associated to
the vertex of Jg corresponding to P,. Analogously, the minimal weighted tree with
proximity relations 7§ (C) of C in (S, P) consists of adding to Z5(C) the dotted lines
corresponding to the proximity relations.

2.4. Proposition. Let C and C' be equisingular germs of reduced curves in (S,P).
Then, their respective minimal weighted trees with proximity relations coincide.

Proof. Let € be the minimal constellation for C in (S, P). The total transform of C by
ng is C* = C + Zy eVE;" (Proposition 1.7) and the number d, of analytic irreducible
components of C whose strict transform intersects E, is d, = C.E,. Thus, given an
enumeration @ of A¢, we have d = —MAe where M and A denote, respectively, the
proximity matrix M = My, and the intersection matrix 4 = Ag,, of € with respect to
. Now, Theorem 1.14 insures that ((E,.Eg).p,d) and (M, A,e) are equivalent data.
Therefore, two germs C and C’ of reduced curves are equisingular in (S,P) if and
only if, given the minimal constellations ¥ and ¢’ for C and C’ in (S,P), there
exist enumerations @ and o’ of 4d¢ and A such that My, = Mgy, Agey = Agrey
and ¢ = ¢’. In particular, it follows that if C and C’ are equisingular in (S, P) then
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their respective minimal weighted trees with proximity relations 7”(C) and J7(C’)
coincide. O

2.5. Remark. In the nonsingular case, the intersection matrix A is —Id and the proxi-
mity matrix defines and is defined by the proximity relations. Therefore, two germs C
and C’ of reduced curves embedded in a nonsingular germ of surface are equisingular
if and only if their respective minimal weighted trees with proximity relations coincide.
The minimal weighted tree with proximity relations of a curve C in a nonsingular sur-
face has the same information as the sequences of multiplicities of the branches of C
together with the intersection multiplicities of every two branches of C. Thus, Defini-
tion 2.2 coincides with the notion of equisingularity of curves if (S, P) is nonsingular
(see [20]).

In general, the converse to Proposition 2.4 is not true as we show in the next
example. Let (S,P) be a rational double point of type As;. The exceptional locus of
the blowing up with center P has two irreducible components £}, and E], and, if P,
is the intersection point E}; NEl,, then €,, = {P, = P,P,} is the minimal constellation
for (S,P). Let us take a point P; € El|, P; ¢ E}, and consider the constellation
€ = %n U {Ps}.

Let {Ei1,E12,E2, E;} be the enumerated irreducible components of the exceptional
locus of 7y and let d' = (0,1,2,2) and (d')* = (0,0,4,1). For each y € A¢ we take
d, (resp. d;) distinct nonsingular irreducible algebroid curves in S¢ transversal to E,
and not intersecting E, for a # y, and we define C (resp. C’) to be the projection on
(S, P) of this union of curves. Both C and C’ are germs of reducible curves embedded
in (S,P) whose minimal constellation is €. Moreover, their respective equisingularity
classes in (S, P) are as shown in Figs. 1 and 2 and hence, C and C’ are not equisingular
in (S, P).

However, their minimal weighted trees with proximity relations Z*(C) and J(C’)
coincide. In fact, if {e,}, and {e,}, are respectively the orders of C and C’ in €, then
we have e = e}, = 11/4,e1; = €|, = 9/4,e2 = €} = 1, e3 = €} = 2. Therefore,
TL(C)=TE(C") is as shown in Fig. 3.

2.6. Proposition. Let C and C' be two equisingular germs of reduced curves in (S, P).
If C is a Cartier divisor, then C' is a Cartier divisor.

Proof. Let ¥ (resp. ¥’) be the minimal constellation for C (resp. C’) in (S, P) and
{e,}, (resp. {e}») the orders of C in ¥ (resp. of C’ in ¥’). Since C and C’ are
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ue
474
Fig. 3.

equisingular in (S, P), there exist enumerations w and @’ of A¢ and Ag such that
Mgy, = Mgy, Agyw = Agoy and e = €. Let {E,}, (resp. {E;}y) be the irreducible
components of the exceptional locus of 7y (resp. m4 ). Then, the respective total trans-
forms of C and C’ by ¢ and mg: are C* = C+3Y_b,E, and C* =C +3. b,E, where
b= (M}g’w)_lg = (M}g,,w,)_lg’ . If C is a Cartier divisor, then the b,’s are integers and,
applying to C’ * the result of Artin quoted in 1.1(b), we conclude that C’ is a Cartier
divisor. [

2.7. Proposition. Let C and C' be two equisingular germs of reduced curves in (S, P).
If € and €' are minimal constellations for C and C' in (S, P), then £((ng).0c/0Oc) =
(g )+ Oz /Oc), i.e. the o-invariants 6(C) and 6(C') coincide.

Proof. With the notation as in 2.6, let D¢ = Y b,E, be the divisor with exceptional
support for ng defined by the total transform of C. Let [Dc¢] be the minimal divisor
with exceptional support for m¢ such that (D¢ — [Dc¢]).E, > 0 for all y. Then we
have §(C) = %DC.(—DC + K5, )+ %e(C) where K, is a canonical divisor on Sy and
e(C) = (Dc—[Dc])(Dc—[Dc|—Ks,) (see [9, Theorem 2.2]). Since (S, P) is a rational
surface singularity, p,(E,) =0 ([2, Lemma 1.3]) and, aplying the adjunction formula
to each E, we deduce that E, K5, = —2 — (E,.E,). Therefore, Dc.(—D¢ + Ks,) and
e(C) only depend on the equisingularity class of C in (S, P) and hence, §(C) = §(C’).

O

Now, let us view the germs of reduced curves in (S,P) as germs of curves in an
ambient nonsingular variety, and let us study its behaviour.

2.8. Definition. Let C be a germ of reduced curve centered at the point P. The nor-
malization n: C — C of C is the composition of a sequence of point blowing ups.
Let @, be the constellation of points infinitely near P over C so defined and % the
constellation obtained by adding to %, the closed points in »~!(P). In this way, the
branches of the tree J5(C) associated to %, correspond bijectively to the branches of
C at P. The equiresolution class of C is the combinatorial data (Fo(C),m) where m
consists of a weight funtion my for each branch B of Z,(C). Each my is defined on the
set of vertices of B and the my-weight of the vertex of B corresponding to a point Q
is the multiplicity at Q of the strict transform of the branch of C corresponding to B.

Given two germs of reduced curves C and C’, we say that C and C' are equiresoluble
if their respective equiresolution classes coincide.
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Let us consider an embedding of the rational surface singularity (S, P) in a germ of
smooth variety (Y,P). Let C be a germ of irreducible curve embedded in (S, P) and
% the minimal constellation for C in (S, P). Then, following the notation in 1.11 and
1.12, we obtain the following result.

2.9. Lemma. Given a point P, in €, if(g,-)t = (e1,..., € ) are the orders of C at P,
then we have

multp(C") = E.C = Z.C = —(p) Aie;.

Proof. Given a curve embedded in a nonsingular variety, the multiplicity of this curve
at a closed point P’ is the intersection product of the strict transform of the curve with
the exceptional divisor of the blowing up of P’. Therefore, the first equality holds.
The other equalities follow from the facts that E}.S¢ = Z; and E}.E},, = 0 whenever
i#i. O

2.10. Theorem. Let C and C' be two equisingular germs of reduced curves in (S, P).
Then, they are equiresoluble.

Proof. Let € (resp. ') be the minimal constellation for C (resp. C’) in (S,P) and
{e,}, (resp. {e}};) the orders of C in € (resp. of C’ in ¢’). There exist enumerations
o and o' of Ay and Ay, respectively, such that My, = Mg/, Ay, = Agy and
e = ¢. Call these data (M, A,e) and let d = —MAe. In this way, if {E,}, and {E]},
are the irreducible components of the exceptional locus of ny and mgs respectively
then, for each y, d, is the number of analytic irreducible components of C (resp. C’)
whose strict transform intersects E, (resp. E)).

From the matrices M and A we deduce the tree F associated to both € and ¢’. In
fact, the number of vertices of J is the number of nonzero boxes in A and the matrix
M define the structure of tree (see 1.8 and 1.12). The d,’s determine the number of
branches of both C and C’ and its relative situation in 7. Therefore, since the m-
weights of the equiresolution classes consist of a weight funtion for each branch, we
may suppose, without loss of generality, that both C and C’ have only one branch.

Now, we compute the integers {p, }, from the matrices M and A as in 1.15, obtaining
that the p,’s are the same for both ¥ and %’. Therefore, Lemma 2.9 guarantees that,
if P, and P/ are the points of ¥ and %’ corresponding to a vertex v; in 4, then
multp,.(fi_l) = multpl/(f”—l), that is, the m-functions defined by C and C’ in 7
coincide. Moreover, since C and C’ are irreducible, there is a unique branch ' of I
for which the m-weights are nonzero. The tree 7, obtained erasing the vertices of '
for which the multiplicity is 1 is the tree associated to the constellations %, and %
defining the normalizations of C and C’. Thus, to compute the equiresolution class of
both C and C’, we consider 7 together with the m-function restricted to 7, and we
add a final vertex with muitiplicity 1. Therefore, the equiresolution classes of C and
C’ coincide. O
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Fig. 4. Fig. 5.

2.11. Remark. In the proof of the preceding theorem, we have computed explicitly the
equiresolution class of a curve C embedded in (S, P) from the equisingularity class of
C in (S, P). However, the converse to Theorem 2.10 is not true, as we show in next
example.

Let (S, P) be a rational double point of type A; and consider the minimal constella-
tion %, = {P1,P2} and the constellation € = {P;, P, P;} defined in 2.5. Let C (resp.
C’) be a germ of irreducible curve in (S,P) whose strict transform intersects transver-
sally E, (resp. E3). In the same way as in 2.5, C and C’ are obtained by projecting a
suitable algebroid curve in S¢. The minimal constellations for C and C’ in (S, P) are,
respectively, %, and € and their equisingularity classes in (S, P) are shown in Figs. 4
and 5.

Therefore, C and C’ are not equisingular in (S, P). However, following the process
described in the proof of 2.10, we deduce that both C and C’ are nonsingular curves
and hence, they are equiresoluble.

3. Minimal system of generators of a complete ideal

In this section we obtain a formula to calculate the minimal number of generators
of an m-primary complete ideal / of the local ring R = 0gp of a rational surface
singularity (S, P), generalizing the formula given by Hoskin and Deligne when (S, P)
is nonsingular. We also give an algorithm to describe a minimal system of generators
of I, which is a generalization of the procedure of Casas [5].

3.1. Definition. A cluster of points infinitely near P (or cluster with origin at P) is
a pair K = (%, {v,},e4,) where € is a constellation with origin at P and the v,’s are
nonnegative rational numbers in such a way that the sequence (v;1,...,v;, ) is associated
to the point P; of €. We call this sequence the virtual orders of K at P; and we call
the constellation & the support of K.

3.2. Remark. To each germ of reduced curve C in (S,P) we may associate a cluster
K(C) = (%,¢) where € is the minimal constellation for C in (S,P) and {e,}, are
the orders of C in €. If C and C’ are two germs of reduced curves in (S, P) such
that K(C) = K(C’), then they are equisingular in (S, P). However, the converse is not
true. For example, let C (resp. C’) be a germ of irreducible curve in a double point
of type A3 whose strict transform by the minimal desingularization of A, intersects
transversally Eq; (resp. Ej2), then C and C’ are equisingular in (S,P}) but K(C) is
different from K(C").
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3.3. Definition. Let K = (%,v) be a cluster with origin at P. We consider the Q-
Cartier divisor on S¢ defined by Dy := Zy vyE;" . Given an effective Weil divisor C
on (S,P), we say that C goes through K if and only if C* > D¢ (i.e. C* — Dy is
effective) where C* is the total transform of C by ng. We say that C goes through K
with effective orders equal to the virtual ones if and only if the orders of C in € are
{v},, or equivalently, if C* = C + D where C is the strict transform of C by ng.

The set of effective Weil divisors on (S, P) going through a given cluster X defines
a family of cycles in (S, P). Analogously, we may consider the Cartier divisors going
through K and define the following ideal of R:

Ix := {0} U {h € R — {0}/ the divisor (h) goes through K}. (®)

That is, Iy is the stalk at P of (n¢).(Os,(—Dk)), i.e. the set of all A € R such that the
Q-Cartier divisor (h)* — Dx is effective. Thus, it is a complete (i.e. integrally closed)
and m-primary ideal, where m is the maximal ideal of R.

Conversely, let us associate a cluster to each m-primary complete ideal.

3.4. Definition. Let / be an m-primary complete ideal of R. Let € be a constellation
with origin at P such that the sheaf /@, is invertible, and D; the divisor on S¢ such
that I0s, = Os,(—Dy). The divisor D; has exceptional support for the desingulariza-
tion mg. Moreover, since I is finitely generated and the orders in ¢ of any effective
Cartier divisor (k) are nonnegative rational numbers, we have D; = Zy vyE;" for some
nonnegative rational numbers {v,},. We define the cluster K; with support in € asso-
ciated to I to be K; = (%, {v;},). By the completeness of I, we have I = I, i.e. I is
the stalk at P of (ng)+(Os,(—Dy)) ([14, Proposition 6.2]).

Note that, if ¢’ is another constellation such that mys factorices through S¢, then
Ag C Ag: and the cluster with support in %’ associated to I is (%', {V,},c4,,) Where
v, = v, if y € 44 and v} = 0 otherwise.

In fact, if K = (%,v) is the cluster with support in € associated to I, then {v,},e4¢
are the orders in % of the Cartier divisor defined by a generic element of / and hence,
there exist effective Cartier divisors going through K with effective orders equal to
the virtual ones. Conversely, let us show that this condition characterizes the clus-
ters K which are associated to some complete ideal. The following proposition is a
generalization of the geometric theory of Enriques.

3.5. Proposition. Given a cluster K = (€,v) with origin at P, the following conditions
are equivalent:

(i) Dx is a divisor on S¢ and Dg.E, <0 for all y € Aq.

(ii) There exists an effective Cartier divisor C on (S,P) going through K with
effective orders equal to the virtual ones.

(iii) There exist Cartier divisors as in (ii), and the only points infinitely near P
through which all these Cartier divisors go are the points in €.
The clusters K satisfying the above conditions are called Cartier clusters.
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Proof. (iii) = (ii) is obvious. To prove (ii)=> (i), let C be a Cartier divisor satisfying
(ii). Then C* = C + Dx and hence, Dx is a divisor and Dx.E, = —C.E, < 0 for all
y. Now, suppose K is a Cartier cluster, then d, = —Dg.E, is a nonnegative integer.
For every y, we take d, nonsingular irreducible algebroid curves in S¢ transversal to
E, and not intersecting any of the E,’s, for a # y. We consider the union & of these
curves and the divisor on S¢ given by D' = & + Dg. For any vy, D' .E, = 0 and
hence, 1.1(b) guarantees the existence of an element 4 € R such that (h)* = D’. The
Cartier divisor C on (S, P) defined by 4 goes through K with effective orders equal to
the virtual ones. If a different choice &’ of the algebroid curves in S¢ is made, then
we obtain a new Cartier divisor C’ on (S, P) going through K with effective orders
equal to the virtual ones and such that the unique points infinitely near P on the strict
transforms of C and C’ are the points of ¥. O

3.6. Corollary. Given a constellation € with origin at P, there is a one to one cor-
respondence between m-primary complete ideals I of R such that the sheaf 10s, is
invertible and Cartier clusters with support in 6.

Proof. It follows from 3.5 because, given a Cartier cluster K = (%,v), Dx is a divisor
on S¢ and KX is the cluster with support in € associated to the complete ideal defined
by the stalk at P of (ng).(0Us,(—Dg)). O

Now, given an R-module M, we denote by /(M) the length of M as R-module. Given
an ideal 7 of R, the colength of I is denoted by /(R/I). The following proposition will
be used to compute the minimal number of generators of an m-primary complete ideal
in terms of its associated cluster.

3.7. Proposition. Let I be an m-primary complete ideal of R. Let € be a constellation
with origin at P such that I10s, is invertible, K = (¥,v) the Cartier cluster with
support in € associated to I and D = Dg the corresponding divisor. If Ks, is a
canonical divisor on Sg, and M and A are the proximity and intersection matrices
of € with respect to some enumeration of Ag, then

¢RI = —iD(D +Ks,) = —3v' Ay + M~ (1 + $(E,.E,)),. 9

Proof. Since (S, P) is a rational surface singularity, we have Z(R/I) = h%(S¢, Op) =
Z(0p) (see [14, Lemma 23.1]). Therefore, the first equality in (9) follows from the
adjunction formula. Besides, D.D = y'Ay and, for each y, E,.Ks, = —2—(E,.E,). Writ-
ing D in terms of the E,’s by the change of basis given by M, we reach equality (9).

O

3.8. Remark. When (§,P) is a germ of nonsingular surface, A = —Id and E.E; =
-1 - Zj_”. 1, that is, 2 + (E;.E;) is the sum of the elements of the ith row of M.
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Therefore, if K = (%,{v;};) is the cluster with support in % associated to I, then
LR/ = %Ei(v? + v;). In fact, this is the formula given by Hoskin and Deligne
in [10, Theorem 5.1; 6, Theorem 2.13].

3.9. Corollary. Let (S,P) be a rational double point and €, a minimal constellation
Jor (S,P). Let I be an m-primary complete ideal of R such that 10s, is invertible
and let K = (6,,,v) be the cluster with support in 6, associated to I. Then,

(RIT) = —3v' Ay, (10)

where A is an intersection matrix defined by %n.

Proof. In the above conditions, E,.E, = —2 for all y (see [1]). Applying this to the
right-side member of (9) we obtain equality (10). O

3.10. Theorem. Let I be an m-primary complete ideal of R. Let € be a constellation
with origin at P such that 10s, is invertible, Z the fundamental cycle for the morphism
ng and D = Dk the divisor on S¢ associated to I. Then, the minimal number of
generators u(I) of I is given by

() =¢(I/ml) = —D.Z + 1. (11)

Moreover, if K = (%,v) is the Cartier cluster with support in € associated to I and
Z =73 puE}, then

) =1= " viypiEf.EN). (12)

1<k, r<s,;
Therefore, u(1) only depends on the orders (vii,...,v15,) of the origin of K. In fact,
u(l) = 1 + multp(C) where C is the Cartier divisor defined by a generic element

of I.

Proof. By Nakayama’s lemma, given xj,...,x, elements of /, they are a minimal
system of generators of 7 if and only if its classes {¥,...,%,} in I/m/ are a ba-
sis of the k-vector space I/m/ and hence, u(/) = dimy(//ml) = £(I/ml). Since
D + 7 is the divisor on S¢ associated to the complete ideal m/, applying 3.7 we
obtain

u(Iy = ((I/mly = £(R/mI) — ((R/]) = —D.Z — Y\Z(Z + Ks,),

where K, is a canonical divisor on S¢. Since p,(Z) = 0, we have Z(Z + K, ) = -2
and (11) is proved. Equality (12) follows from (11) since D = EvyE;" , and the last
assertion is consequence of Lemma 2.9. [

3.11. Remark. If (S,P) is a germ of nonsingular surface and / is an m-primary com-
plete ideal of Usp, then Z = Ef and u(Z) = v| + 1, where v, is the multiplicity of 7
at P (see [11, Theorem 2.1]).
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3.12. Corollary. Let (S,P) be a rational double point. Let K = (¥,v) be a Cartier
cluster with origin at P and Iy the complete ideal defined by K. Then, the minimal
number of generators of Iy is given by

vii+vie+1 if(S,P)is of type A, (n > 2),
wix) =< 2w +1 if (S,P) is of type Ay,
v+ 1 if (S,P) is of type D, (n > 4),E¢,E; or Es.

Proof. If (S,P) is an A,-singularity (n > 2), then the exceptional locus of the blow-
ing up with center P has two irreducible components E}, and E],. Besides, for any
constellation %, the fundamental cycle for the desingularization ng is Z = E}; + E},
and we have E}| .E}, = E}5.E}; = —n/(n—1) and Ef|.Ef; = 1/(n— 1). Therefore,
the orders of K at the origin are a pair (v1,vi2) and p(lx) = vi; + vi2 + 1 in this
case. Analogously, a Cartier cluster K on an A;-singularity has only one order v, at
the origin, and the fundamental cycle for ng is Z = Ef where E} .E]f = —2, therefore
u(lx) = 2v; + 1. Finally, if (S, P) is a singularity of type D, (n > 4), Eg, E; or Eg,
then the exceptional locus of the blowing up with center P has only one irreducible
component and, for any constellation €, the fundamental cycle for ng is Z = 2E]
where Ef.Ef = —%. Therefore, a Cartier cluster X on (S,P) has one order v at the
origin, and u(lg) =v; +1. O

Now, let K be any cluster with origin at P. We will give an algorithm to describe a
minimal system of generators of the complete ideal /x. First, let us prove a preliminary
result which is a generalization of Laufer’s procedure to compute the fundamental cycle
[12, Proposition 4.1].

3.13. Lemma. Let € be a constellation with origin at P and D = }_ b,E, a Q-
Cartier divisor on S¢. Then, among all the exceptional divisors D' on Sg such that
D' > D and D'.E, <0 for all y, there is a minimal one D.

We can compute D in the following recurrent way. Let D = 3 b.E, where b, is
the smallest integer such that b; > b,. Having defined Dy, if D,.E, <0 for all v, then
D = D,. Otherwise, we take y, such that D,.E, >0 and we set D,y =D, + E,.

Proof. Let 2 be the set of divisors D’ on S¢ with exceptional support such that D' > D
and D'.E, <0 for all y. If Z is the fundamental cycle for ng then rZ € & for r > 0
and hence, & is nonempty. Besides, let D} = 3 ¢ E, and D; = 3 cJE, belong to
2, and let D' = ¥, ¢,E, where ¢, = inf{c,,c3}. Fixed v, let us suppose ¢} < c2, then
D' .E, = c}(Ey.E,) + 2wty x(Ex.E;) < DI.E, < 0 and, since D’ > D, it follows that
D’ belongs to 2. Therefore, there exists a minimal element D. To prove the second
assertion, it is enough to show that the divisors D, defined recurrently from D satisfy
D, < D. 1t is clear that D; < D. Suppose that D, < D, then D,,; = D, + E, where
(D — D;).E,, <0. Thus, the effective divisor D — D, contains E,,, i.e. D,y < D, and
the lemma is proved. [
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3.14. Let K = (¥,v) be a cluster with origin at P. Let us apply the preceding pro-
cedure to the Q-Cartier divisor Dx. The divisor D so obtained satisfies E.Ey < 0 for
all y and hence, the argument in the proof of 3.5 insures that, in the expression D =
>, WE; of D in terms of the £)’s, the rational numbers {v)}, are nonnegative. Thus,
it follows from the definition of D that the cluster Ky = (%,y") is the unique Cartier
cluster with support in ¥ such that Iy, = Ix. We call it the Cartier cluster induced
by K.

Let K’ be the cluster associated to the complete ideal mlk, that is, K’ is the cluster
with support in ¢ whose virtual orders at the points of ¥ different from P are the
virtual orders {vg} of Ko and whose orders at P are {v}, + pi};_,. Let us construct
a sequence of Cartier clusters {K,},_,, where r is the minimal number of generators
of Iy, such that K, = K’. We define inductively K;,; from K, in the following way:
“Let K, = (%,,)") and K’ = (%,,v') where %, is a constellation which is a common
support of K, and K’. We fix an enumeration of the set of indices 44 and we choose
E, exceptional on Sg, such that v; <v, and v, = v} for all § <« (since Iy’ C I, there
exists such an E,). We take a point O, € E, such that O, ¢ Eg for § # o and consider
the cluster K] | = (4,U{Q:}, {v;}ye 44 U{1}). Then, K;,, is the Cartier cluster induced
by K/, which is obtained applying Lemma 3.13.”

3.15. Theorem. The preceding algorithm constructs a sequence {K.},_, of Cartier
clusters such that Iy, = Ix, K, is the cluster associated to the complete ideal mlig
and, for each t, Iy,,, Clx, and ¢(Ix,/Ix.,,) = 1. If, for each t, we take h, € Ix\Ix,,,,
then {h,}'Zy is a minimal system of generators of the ideal I.

Proof. It is clear that the algorithm finishes after a finite number of steps. Besides, by
the definition of K;;; we have Ix,,, = IKtl+l Clg,. Moreover, Iy, /Iy, is isomorphic to
Os,.0./Ms,,0, and hence, £(Ix /Ix,,, ) = dim(0Os, o, /ms,,0,) = 1. Thus, r = £(Ix/mig)
is the minimal number of generators of Ix and the theorem is proved. O

3.16. Remark. Since /(Ix /Ix,, ) = 1 and both K; and K, are Cartier clusters, we
can take the element 4, in Ix, \ Ix,., in such a way that the Cartier divisor Cj, defined
by h, goes through K, with effective orders equal to the virtual ones and such that
the constellation %; support of K, gives rise to an embedded desingularization of Cj,
in (S,P). Therefore, the algorithm to compute the sequence {K};_, determines the
equisingularity classes of the curves {Cy, },.

3.17. Example. Let (S, P) be a rational double point of type A; defined by xy+z* = 0
in a neighbourhood of the point P = (0,0,0) in K. Let €, = {P,P,} be the minimal
constellation for (§,P) (see 2.5) and K the cluster with support in %, whose orders
are (1,%) at P, and % at P,. We have Dy = Ep;; + %Elz + 2E; and hence, K is
not a Cartier cluster. We apply Lemma 3.13 to Dx and we obtain the Cartier cluster
Ko = (%n,{(1,1),1}) induced by K. Thus, Corollary 3.12 insures that the minimal
number of generators of the complete ideal Iy = I, is » = 3.
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The Cartier cluster K’ = K; is obtained from Ky by adding the orders (1,1) at the
origin, i.e. K3 = (%m, {(2,2),1}). To construct K;, we observe that W0, =1 <2 = v/,.
We consider a closed point Qg € E1; such that Qp ¢ E;,F,, and the cluster K| with
support in %, U {Qo} whose weights are {(1,1),1,1}. After applying Lemma 3.13,
we obtain the Cartier cluster K; induced by K|. In fact, K; = (%.,{(2,1), %}) and
the element Ay of R defined by y belongs to Ix, \ Ix,. Analogously, to compute K;
we observe that v, = 1 <2 = v|, and, applying the same method, we obtain the
Cartier cluster K, = (%, {(2,2),0}). The class #; of x in R belongs to Ik, \ Ix, and
the element &, defined by z? belongs to Ix,\Ix,. Therefore, {y,x,z2} define a minimal
system of generators of the complete ideal Ix.
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