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Abstract 

We study the germs of curves in a rational surface singularity (S,P) from the point of view 
of proximity, classifying them up to a notion of equisingularity. We introduce the concept of 
cluster of infinitely near points and we use it to generalize the Hoskin-Deligne formula, and to 
give an algorithm to describe a minimal system of generators of a complete ideal in the local 
ring Los,,~. @ 1997 Elsevier Science B.V. 

1991 Math. Subj. Class.: 14517, 14H20 

0. Introduction 

In order to classify the irreducible plane curve singularities, several invariants have 

been introduced such as characteristic pairs, multiplicity sequence, value semigroup, etc. 

In fact, a geometric approach, based on the idea of proximity, was already developed by 

Enriques in [8] (1915). Recently, this notion of proximity has been applied in [4,15,3]. 

In this paper, we study the germs of curves embedded in a rational surface singularity 
from the point of view of proximity. 

We classify the germs of reduced curves in a rational surface singularity (S,P) up 

to a notion of equisingularity which generalizes the equisingularity of germs of plane 

curves. The equisingularity class of such a germ of curve C in (S,P) consists of 
the weighted dual graph of the minimal embedded desingularization of C in (S, P), 

together with some weighted arrows corresponding to the branches of C. We express 
this combinatorial object in terms of some invariants of the singularity (S,P) and the 
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curve C, namely, the proximity matrix (Definition 1.4), the intersection matrix in terms 

of total transforms (1.12) and the orders of C (Definition 1.6). After discussing these 

invariants in Section 1, we prove that the equisingularity class of C in (S,P) determines 

the equiresolution class of C (Theorem 2.10). We give an example to show that the 

converse is not true. 

The idea of studing families of Cat-tier and Weil divisors on (S,P) going through a 

finite set of points infinitely near P with assigned orders is developed in Section 3. We 

introduce the notion of cluster with origin at P and generalize the geometric theory 

of Enriques to rational surface singularities. When we deal with families of Cattier 

divisors, this allows us to identify the m-primary complete ideals of the local ring 

C9.s~ with some specific clusters: the Cat-tier clusters. Using this characterization, we 

generalize to rational surface singularities the formula given by Hoskin and Deligne 

[lo, 61. This formula computes the minimal number of generators ~(1) of any m- 

primary complete ideal I. In particular, we observe that, as it happens in the nonsingular 

case, p(Z) only depends on the orders at the origin of the cluster associated to Z. Finally, 

as another application of the notion of cluster, we give an algorithm to describe a 

minimal system of generators of 4 generalizing to rational surface singularities the 

procedure given by Casas [5]. 

1. Constellations of points infinitely near the point P of the rational surface 
singularity (S, P) 

In this section, after recalling the basic properties of rational surface singularities 

that will be used further, we introduce some definitions and notations and prove some 

preliminary results. Throughout this paper, a surface singuhrity is a pair (S,P) con- 

sisting of the spectrum S = SpecR of a noetherian normal complete two-dimensional 

local ring R containing an algebraically closed field k isomorphic to its residue field, 

and the closed point P of S. 

1.1. Recall that a surface singularity (S,P) is said to be a rational surface singularity 
if there exists a desingularization p : X -+ S such that the stalk at P of R’p,Co, is zero. 

Moreover, one can prove that any desingularization p : X + S of (S, P) is a product 

of blowing ups centered at closed points, and the stalk at P of R’ p*@~ is zero. In 

particular, if P is nonsingular, then (S,P) is a rational surface singularity. 

The following properties hold for a rational surface singularity (S,P): 
(a) For any Weil divisor C on (S,P) there exists an integer r such that rC is a 

Cartier divisor on (S,P). 
(b) Let p : X + S be a desingularization of (S, P) and let {Ei}&, be the irreducible 

components of the exceptional locus of p. If D is a divisor on X with D.Ei = 0 for 

all i, then there exists an element h in the maximal ideal of 0s~ such that (h)* = D, 
where (h)* is the total transform on X of the divisor given by h on (S,P). 
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A proof of those results may be found in [ 1,2,14]. 

1.2. Definition. Let (S,P) be a rational surface singularity. The closed points in the 

exceptional locus of the blowing up ~1 of P are called points in the jirst injinites- 

imal neighbourhood of P. For i > 1, we define inductively the points in the ith 

injinitesimal neighbourhood of P to be the closed points in the (i - 1)th infinitesi- 

mal neighbourhood of some point in the first infinitesimal neighbourhood of P. The 

points in some infinitesimal neighbourhood of P are called points infinitely near P 

(see PI>. 
A constellation V of points infinitely near P (or constellation with origin at P) 

is a finite set of points infinitely near P containing P and every point preceding 

a point in %z?, i.e. if Q E 59 and Q is infinitely near a closed point R, then 

R E V. 

1.3. We may label the points in %?, say 59 = {PI,. . . , P,}, in such a way that PI = P 

and if Pj is infinitely near Pi then j > i. In this way, we get a sequence of point 

blowing ups 

where Zi is the blowing up with center Pi and 71% = ~1 o . . . o 71,. We also denote 71 

for rcq when no confusion is likely. Observe that the isomorphism class of the surface 

SW over S does not depend on the choice of the labelling of +Z with the previous 

property. Throughout this paper, we will consider constellations V such that 71% is a 

desingularization of (S, P). It follows from 1.1 that constellations of points infinitely 

near P and desingularizations of (S, P) are equivalent data. The constellation $,, such 

that XV, is the minimal desingularization of (S,P) is called the minimal constellation 

for (XP). 
In the above situation, we denote by Ej,, . . . , E& the irreducible components of the 

exceptional locus of 7ti (the upper i means that they are divisors on Si), Eik may not 

be a Cartier divisor on Si but it is a Weil divisor. For j > i, let E:ik (resp. El?) be the 

strict transform (resp. the total transform in the sense of Mumford [16]) of Eik in Sj 

and, for simplicity, denote Eik for E,; and E,; for E,;m. Therefore, Eik is an irreducible 

component of the exceptional locus of n and Ezz is a Q-Cartier divisor on SW. We call 

Aw, or simply A = {(i, k)/ 1 5 i 2 m, 1 < k < si}, the set of indices of the irreducible 

components of the exceptional locus of rc. 

Observe that the @vector space N’(&/S) = (Pic(&)/ =) @ Q (where Pic(&) 

denotes the Picard group of SW and E is the numerical equivalence relation D ZG 0 if 

D.E, = 0 for any exceptional curve E, in SW) is Eq := @+dQ;PEy = $yE~QE~, This 

follows immediately from the fact that the intersection matrix (E,.EP)~,B~~ is negative 

definite. 

We can consider total orders in the set of indices A compatible with the labelling 

in V in the sense that (i, k) < (i’, k’) whenever i < i’, for any k, k’. These total orders 

will be called enumerations of A. 
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1.4. Definition. Let %? be a constellation with origin at the point P of the rational 

surface singularity (S,P) and let OJ be an enumeration of the set of indices A of the 

irreducible components of the exceptional locus of 71~. We define the proximity matrix 

of Q? with respect to o to be the matrix A&g, of the change of basis from {E,*}, to 

{E,,},. That is, 

i&&” = E_ (2) 

where by E_ and E* we denote the column vectors consisting of the E?‘s and EF’s 

ordered by o. We denote M for Mq, when no confusion is likely. 

1.5. Remark. If (S, P) is nonsingular, the above matrix has been introduced by Du 

Val [7]. In this case, each point in %’ gives rise to a unique irreducible component 

Ei of the exceptional locus of XV, that is, the cardinal of A is equal to the num- 

ber of points in 59. Fixed a labelling on the points in G9, say %’ = {PI,. . . ,P,}, 

we have Ei = Ef - C pijE,% where pij = 1 if i < j and Pj E E{, and pu = 

0 otherwise. Following Emiques terminology, the relation Pi + fi if 4 E E{ is 

called proximity relation. If we denote by Pr the upper triangular matrix (pij)i,j then 

the proximity matrix is A4 = Id - Pr and hence, it only depends on the proximity 

relations. 

We now analyse the structure of the proximity matrix. To do so we introduce some 

definition and prove a preliminary result. 

1.6. Definition. Let C be an effective Weil divisor on the rational surface singular- 

ity (S,P) and ‘3 = {PI,..., P,} a constellation with origin at P. Let EY be an irre- 

ducible component of the exceptional locus of zw obtained by the blowing up of Pi, 

i.e. y = (i, k) for some k (1 2 k 5 si), and uy the valuation of the function field 

K(S) induced by EY. Then, the strict transform civl of C on the surface Si_1 is a 

Q-Cartier divisor and hence, e,(C) := v,(c’-‘) is a well-defined rational number. The 

rational numbers { eY = e,(C)},Ed are called the efSectiue orders (or orders) of C 

in V. 

Note that, in particular, if (S,P) is nonsingular, C is a curve on (S, P) and V = 

{Pl,..., P,} a constellation with origin at P, then, for 1 2 i 5 m, ei = vi{?‘) is the 

multiplicity of 2-l at Pi. 

1.7. Proposition. Let C be an effective Weil divisor on (S,P) and V a constellation 

with origin at P. Let C* and i? be, respectively, the total and strict transform of C 

by ny and {ey}y the orders of C in %. Then, 

C* =??+xe,Et. (3) 

Proof. First, suppose that C is a Cartier divisor on (S,P) and take h E 0s~ defining 

C in (S,P). Then, the total transform C*l of C in 5’1 is the Cartier divisor on S1 given 
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by h and 

c*’ = c’ + 2 V,k(C)E$. 
k=l 

(4) 

If C is not a Cartier divisor, there exists Y E N such that rC is a Cartier divisor 

and hence, the above equality still holds. To complete the proof it is enough to apply 

induction on equality (4). 0 

1.8. Corollary. Let %2 be a constellation with origin at P and jix an enumeration 
w of A. For 1 5 i < j < m, let Ej be the (si x sj)-matrix of rational numbers 
Ej = (ej,(Eik))k,r and let V be the (n x n)-upper triangular matrix consisting of 
(Kj)i<j and with zeroes elsewhere. Then, the proximity matrix is A4q, = Id - V. 

Moreover for i < j tf P. $! E!‘-’ 

of Ej is zero. If Pj E’E$- / 
rk then ejr(Eik) = 0 for 1 5 t < sj, i.e. the kth row 

then ejt(E:k) # 0 for 1 < t 5 sj, i.e. all the elements of 
the kth row of V$j are nonzero. 

Proof. First note that, from the proof of 1.7 it follows that equality (3) is also true for 

a Weil divisor C on a surface S with rational singularities, instead of a rational surface 

singularity (S,P). Now, to compute the matrix M = A4ww it suffices to apply (3) to 

each Weil divisor Eik defined on Si, that is, we suppose our surface S is Si and consider 

the desingularization Sq -+ Si. In this way, one has 

Eik = Ez - C C ejt (Eik )E; 
j>i l<t<s, 

and the first assertion is proved. The second part of the corollary follows from the fact 

that Pj is the center in Sj_i of the valuation vjt, for 1 < t < sj, 0 

1.9. Definition. Given a constellation % with origin at P and two points P;: and Pj in 

+?, we say that 5 is proximate to P;:, and we denote it by 4 -+ fl (or simply j + i), 
if either Pj is in the first infinitesimal neighbourhood of Pi or else Pj lies on the strict 

transform of the first infinitesimal neighbourhood of Pi. That is, if a labelling in the 

sense of 1.3 is given, say 59 = {PI , . . . , P,}, then 4 is proximate to fi if and only if 

j > i and Pj E Eik for some k, 1 5 k 5 Si. 

To each constellation g we associate a tree &, or simply Y, in the following way: 

the vertices of 9 are in a one to one correspondence with the points in %?, and the 

edges with the pairs (Pt,Pj) such that Pj is in the first infinitesimal neighbourhood of 

4,. We can also associate to % a tree with proximity relations Yqp, or YP. It consists 

of F, together with some additional dotted lines corresponding to the pairs (P,Pj) 
whenever Pj is proximate to Pi but not in the first infinitesimal neighbourhood of Pi. 

1.10. Remark. If (S,P) is nonsingular, knowing the tree with proximity relations is 

equivalent to knowing the proximity matrix. From Corollary 1.8 it follows that, in 
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general, for a rational surface singularity the tree with proximity relations 

from the proximity matrix, but this matrix contains more information. 

is obtained 

We now discuss the structure of the intersection matrix A,, = (E,*. Eg*)%,g. 

1.11. We embed the rational surface singularity (S,P) in a germ of smooth variety 

(Y, P) by (T : (S,P) -+ (Y,P) (recall that the dimension of Y can be taken to be r + 1, 

where r is the multiplicity of (S,P), see [l]). We consider the sequence of point 

blowing ups 

Y, = Y,A Y,_1 A,,, - I -... AY,t,Y() = y 

Q,, T cni--l T HIT UT %-I sfg=sm~sm_,-~~~~sl~ so = s 
where r~i is the embedding of Si in Yi and xi+1 is the blowing up with center ai(Pi+l). 

We denote by [Ej the exceptional divisor of Iii (IEi is isomorphic to P’ if Y + 1 is the 

dimension of Y). There exist strictly positive integers pik for 1 < i < m and 1 5 k 5 si 

such that 

g*(Ei) = pilEi, + ” . + pis,Ejsi. (5) 

In fact, for each i, Zi = Ck pikE,i is the fundamental cycle for the desingularization 

SW -+ Si_1 of (Si_l,Pi) (see [l, Theorem 41) and thus, the integers {py}yEdq do not 

depend on the embedding. The above relations give us some information about the 

matrix A. 

1.12. Proposition. Let ?2 be a constellation with origin at P and jix an enumeration 
o of Aw. IJ; for 1 < i 5 m, Ai is the (si x si)-matrix of rational numbers Ai = 
(E,:.Elt)k,+ then /iv, is the symmetric matrix consisting of the boxes Ai in the 
diagonal and zeroes elsewhere. 

Moreover, with the notation in (5), if (4)’ = (PiI,. . . , pis,), then we have 

(fi)‘AiJ = -m$(Si-1). (6) 

In particular, if the point pi is nonsingular then si = 1 and Ai = - 1 and, if (S, P) is 
nonsingular, then A = -Id. 

Proof. The fundamental cycle Zi = Ck PikEz for SW + Si-1 is equal to G~([EF), 

where IE,* is the total transform of IEi by the morphism Yw + Yi:. When i # j 
we have [ET. ET = 0 and hence, 0 = Zi.Zj = zk,r pikpjt(E,z.E,:). Since E,g.E,: is 

nonnegative for i # j and all pv are strictly positive, whenever i # j we have 

E,*,.E$ = 0 and hence the first assertion is proved. Equality (6) follows from the 

fact that the multiplicity of the rational surface singularity (Si_l,fi) at P; is -Zi.Zi 

[ 1, Theorem 41. q 
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1.13. Remark. Equality (5) insures that IE’.Sv = pii Ez + . . . + pjs, Ez$. However, the 

above assertion does not hold if we substitute the total transforms by the strict trans- 

forms. That is why the basis {E.;}, of Eq @ Q plays an important role. 

For example, let (S,P) be the rational double point of type DS defined by x4 + 

xy* + z2 = 0 in a neighbourhood of the point P = (0, 0,O) in k3 (where k is an alge- 

braically closed field). Let ‘3, = {PI = P, P2, P3, P4) be the constellation defining the 

minimal desingularization of (S, P), where PI and P3 are points in the first infinitesi- 

mal neighbourhood of PI giving rise to the irreducible components Ez,, Eg2 and Ei in 

the respective point blowing ups, and P4 is the point of intersection El, f? Ez2, which 

defines only one irreducible component of the exceptional locus of Q,,,. Let % be the 

constellation V,,, U {Ps} where P5 is a point in the first infinitesimal neighbourhood of 

PI such that Ps $ %$. If we consider the natural embedding of (S,P) in Y = k3, then 

the strict transform IEi of IE; in Yq is given by IFi = IEr - [E,* - iE: - lE,* - iET and we 

have [Ei.Sv = 2E: - ET, - E;2 - ET - Ez - E:. However, the strict transform El of 

E: by rcy is El = EF -~(E,*,+E&+E~+E~)-Ec,andhence 

lE,.S, = 2E1 + E5 (7) 

is different from ptEi = 2Ei. 

In fact, in the same way as in 1.2 and 1.9, we may define points infinitely near or 

proximate to the point P viewed as points over the variety Y. In this way, the points 

infinitely near P over S are exactly the points infinitely near P over Y which lie on 

the corresponding strict transform of S. However, the notion of proximity is different 

if we consider the points over S or over Y. For example, equality (7) insures that 

every closed point P6 in Es - El is a point proximate to P viewed as points over 

the ambient space Y, but it is not proximate to P viewed as points over S. What we 

always have is that proximity over S implies proximity over the ambient space, since 

Ej1 U . . U Ejs, C Ej.Sq. 

Given a constellation % with origin at the point P of the rational surface singularity 

(S, P) and an enumeration w of Aw, the intersection form on Ew may be represented 

by two different matrices: /1~~ in terms of the total transforms {ET} and (E,.E~)Q 

in terms of the strict transforms {E?}. Let us show the relationship between A,, and 

(Ea.Eb)a,~. 

1.14. Theorem. Let % be a constellation with origin at P and w an enumeration of 
Ag; then we have (Ex.Ep)a,p = A4~WA~WM&,. Conversely, given any total order on 
the set of irreducible components of the exceptional locus of KY, from the intersection 
matrix (E,.Ep)a,p with respect to this order we can recover an enumeration cc) and 
we can compute the proximity matrix I%&, and the intersection matrix A,,. 

Proof. The first equality is clear from the definitions. Now, given the matrix (E, . Eg)G(,p, 

we can compute the fundamental cycle Z for the morphism rcq, since Z is the minimal 

cycle with exceptional support such that Z.E, < 0 for each y. Besides, Tjurina proved 
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that Z.& = 0 for i # 1,1 5 k 5 si and Z.Eik # 0 for 1 5 k 5 s1 (see [19, Proposi- 

tion 1.21). Therefore, we can deduce which are the files of (E,.EB)~,B corresponding to 

the irreducible components of the exceptional locus of nq defined by the blowing up 

of P. Suppose these are the s1 first files, then the (n - SI ) x (n - s1 )-matrix obtained by 

erasing the s1 first files and columns of (E,.Ep),p defines a negative definite bilinear 

form whose dual graph has as many connected components as points in the first in- 

finitesimal neighbourhood of P are in %, that is, the space in which this bilinear form 

is defined is decomposed as orthogonal sum of subspaces. By reiterating the above 

process, we recover an enumeration w of Aq and we obtain the tree 9~ together with 

the assignation to each vertex vi of Yq the number Si of irreducible components of 

the exceptional locus of 71~ defined by the blowing up of the point Pi corresponding 

t0 Vi. 

Now, let us show how the proximity matrix M = A&, = (rn,~)~,p is obtained 

from this information. We have A4 = Id - V where V is the upper triangular matrix 

consisting of (Q)i<j (see 1.8). Let US compute the { Eji)l<i<j<m in a recursive way. 

We know that 

El::,, = Q,r - C * 
m(iO,r),(i,s)Ei,s, 

i>io,l<s<s, 

where {m(io,r),(i,s)} is the unique solution of the system of equations defined by impos- 

ing E,: r. E,?, = 0 f or i > io, 1 5 s < St. Thus, once we know {cj}i>iO, for i > io, we 

can write $$ in terms of the E?‘s and hence, the solutions of the preceding system 

can be computed from the knowledge of (Eg.Eb)l,~. 

Finally, the intersection matrix A = (E,*. Et) can be obviously described in terms 

of A4 and (E,.E,J)~J. In fact, A = M-l(E,.Ep)r,p(M’)-‘. q 

1.15. Remark. From the preceding result it follows that, given a constellation %7, the 

integers {py}yE~u can be computed from the proximity and intersection matrices M and 

A of %? with respect to an enumeration w, or equivalently, from the matrix (E,.ED)~J. 

In fact, to obtain {Plk}:=l we just have to compute the fundamental cycle Z for rcq 

from the matrix (Ea.Ea)a,p and express it in terms of the ET’s by the change of basis 

defined by M. For i > 2, the proximity and intersection matrices of the desingularization 

Sq + Si_1 can be computed in a recursive way from A4 and A and hence, applying 

the above argument to the fundamental cycle Zi for SW + Si_1, we obtain the integers 

{Pik):=l. 

2. Classification of curves in a rational surface singularity 

In this section we extend the notion of equisingularity of germs of plane curves 

to germs of curves on a rational surface singularity (S,P). We prove as main result 

that if C and C’ are equisingular curves in (S,P) then they are equiresoluble, that 
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is, the respective multiplicities of the strict transforms of the branches of C and C’ 

coincide. 

2.1. Definition. Let C be a germ of reduced curve embedded in the rational surface 

singularity (S,P). An embedded desingulurization of C in (S,P) is a desingularization 

rc : X + S of (S,P) such that the strict transform c of C by rc is nonsingular and 

the support of the total transform C* has only normal crossings. By composing the 

minimal desingularization rcq”, : Sgl + S of (S,P) with the minimal desingularization of 

the support of the total transform of C on S w”,,, we get an embedded desingularization n: 

of C in (S,P) which is minimal in the sense that it satisfies the universal property. The 

constellation %? with origin at P such that 71 = rcy is called the minimal constellation 
for C in (S, P). 

2.2. Definition. Let C be a germ of reduced curve in (S, P) and let %? be the minimal 

constellation for C in (S,P). We define the equisingularity class of C in (S, P) to be 

the combinatorial object consisting of the weighted dual graph of 71~ together with, 

for each y E AU, an arrow with origin at the vertex corresponding to the divisor 

EY weighted by the number d, of analytic irreducible components of C whose strict 

transform intersects E?. 
Given two germs C and C’ of reduced curves embedded in (S,P), we say that C 

and C’ are equisingulur in (S,P) if their respective equisingularity classes in (S, P) 
coincide. 

2.3. Definition. Let % = {P,,. . . , P,} be the minimal constellation for C in (S, P) and 

let {eY}YE40 be the orders of C in %?. We define the minimal weighted tree Fs(C) 
of C in (S, P) to be the tree Fq together with the weights (eii,. . . , es) associated to 

the vertex of Yw corresponding to fi. Analogously, the minimal weighted tree with 
proximity relations Fsp(C) of C in (S,P) consists of adding to Fs(C) the dotted lines 

corresponding to the proximity relations. 

2.4. Proposition. Let C and C’ be equisingular germs of reduced curves in (S,P). 
Then, their respective minimal weighted trees with proximity relations coincide. 

Proof. Let V? be the minimal constellation for C in (S, P). The total transform of C by 

nw is C* = c + C, e?E; (Proposition 1.7) and the number d, of analytic irreducible 

components of C whose strict transform intersects EY is d, = c.E,. Thus, given an 

enumeration o of Aq, we have d = -A4& where M and A denote, respectively, the 

proximity matrix M = Mqw and the intersection matrix A = A,, of %? with respect to 

o. Now, Theorem 1.14 insures that ((E,.EB)~,~,~) and (M, A,e) are equivalent data. 

Therefore, two germs C and C’ of reduced curves are equisingular in (S,P) if and 

only if, given the minimal constellations %? and %?’ for C and C’ in (S,P), there 

exist enumerations w and w’ of A% and Awl such that Mq, = M~J,,, A,, = AU/~/ 
and e = e’. In particular, it follows that if C and C’ are equisingular in (S,P) then 
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their respective minimal weighted trees with proximity relations &‘(C) and &‘(C’) 

coincide. 0 

2.5. Remark. In the nonsingular case, the intersection matrix ,4 is -Id and the proxi- 

mity matrix defines and is defined by the proximity relations. Therefore, two germs C 

and C’ of reduced curves embedded in a nonsingular germ of surface are equisingular 

if and only if their respective minimal weighted trees with proximity relations coincide. 

The minimal weighted tree with proximity relations of a curve C in a nonsingular sur- 

face has the same information as the sequences of multiplicities of the branches of C 

together with the intersection multiplicities of every two branches of C. Thus, Defini- 

tion 2.2 coincides with the notion of equisingularity of curves if (S,P) is nonsingular 

(see [20]). 

In general, the converse to Proposition 2.4 is not true as we show in the next 

example. Let (S,P) be a rational double point of type A3. The exceptional locus of 

the blowing up with center P has two irreducible components Ei, and Ei2 and, if P2 

is the intersection point El, n E12, then $+&, = {PI = P, Pz} is the minimal constellation 

for (S, P). Let us take a point P3 E Ei,, P3 @ Ei2 and consider the constellation 

G?? = G?& u (P3). 

Let {El,, Ei2, E2, E3) be the enumerated irreducible components of the exceptional 

locus of rcny and let dt = (0,1,2,2) and (d’)t = (0,0,4,1). For each y E AW we take 

d, (resp. db) distinct nonsingular irreducible algebroid curves in SW transversal to Ey 

and not intersecting E, for c1 # y, and we define C (resp. C’) to be the projection on 

(S, P) of this union of curves. Both C and C’ are germs of reducible curves embedded 

in (S,P) whose minimal constellation is %7. Moreover, their respective equisingularity 

classes in (S, P) are as shown in Figs. 1 and 2 and hence, C and C’ are not equisingular 

in (S,P). 

However, their minimal weighted trees with proximity relations Ysp(C) and Fsp(C’) 

coincide. In fact, if {eY}Y and {e;,}? are respectively the orders of C and C’ in %‘, then 

we have eii = ei, = 1 l/4, ei2 = ei2 = 914, e2 = e: = 1, es = ei = 2. Therefore, 

Ysp(C) = Sl(C’) is as shown in Fig. 3. 

2.6. Proposition. Let C and C’ be two equisingular germs of reduced curves in (S, P). 

If C is a Cartier divisor, then C’ is a Cartier divisor. 

Proof. Let % (resp. W) be the minimal constellation for C (resp. C’) in (S,P) and 

{ey]v (resp. {e%) th e orders of C in V (resp. of C’ in U’). Since C and C’ are 

2 2 1 1 4 

4 

-1 -3 -2 -2 -1 -3 -2 -2 

Fig. 1. Fig. 2. 
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equisingular in (S,P), there exist enumerations w and o’ of Av and Awl such that 

Me, = MV,w, 3 /lqw = A,/,/ and e = e’. Let {EY}Y (resp. {Ei},) be the irreducible 

components of the exceptional locus of rcy (resp. rcyf ). Then, the respective total trans- 

forms of C and C’ by rcy and XVR’ are C* = c+ C byEy and C’* = % +C byE: where 

b = (M&,)-‘e = (A4&,,w,)-t&. If C is a Cartier divisor, then the b,‘s are integers and, 

applying to C’* the result of Artin quoted in 1.1(b), we conclude that C’ is a Cartier 

divisor. 0 

2.7. Proposition. Let C and C’ be two equisingular germs of reduced curves in (S, P). 

If %? and %?I are minimal constellations for C and C’ in (S,P), then e((~~,),Loc/lCo,) = 

Q(TTw,),~,,/~~), i.e. the b-invariants 6(C) and 6(C) coincide. 

Proof. With the notation as in 2.6, let DC = C brEr be the divisor with exceptional 

support for rcq defined by the total transform of C. Let [Del be the minimal divisor 

with exceptional support for xy such that (DC - [Dcl).E, > 0 for all y. Then we 

have 6(C) = iDo.(-DC + KS,) + ie(C) w h ere Ks, is a canonical divisor on SW and 

e(C) = (DC- [Dcl).(Dc- [DC] -KS,) (see [9, Theorem 2.21). Since (S,P) is a rational 

surface singularity, pa(E,) = 0 ([2, Lemma 1.31) and, aplying the adjunction formula 

to each Ey we deduce that E,.Ks, = -2 - (E,.I&). Therefore, Dc.(-DC + KS,) and 

e(C) only depend on the equisingularity class of C in (S, P) and hence, 6(C) = 6(C’). 

Now, let us view the germs of reduced curves in (S,P) as germs of curves in an 

ambient nonsingular variety, and let us study its behaviour. 

2.8. Definition. Let C be a germ of reduced curve centered at the point P. The nor- 

malization IZ : E -+ C of C is the composition of a sequence of point blowing ups. 

Let %‘s be the constellation of points infinitely near P over C so defined and %?i the 

constellation obtained by adding to 55’0 the closed points in n-‘(P). In this way, the 

branches of the tree Ye(C) associated to %?c correspond bijectively to the branches of 

C at P. The equiresolution class of C is the combinatorial data (Ys(C),m) where m 

consists of a weight fimtion mB for each branch B of Ys(C). Each ~~ is defined on the 

set of vertices of B and the EB-weight of the vertex of B corresponding to a point Q 

is the multiplicity at Q of the strict transform of the branch of C corresponding to B. 

Given two germs of reduced curves C and C’, we say that C and C’ are equiresoluble 

if their respective equiresolution classes coincide. 
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Let us consider an embedding of the rational surface singularity (S,P) in a germ of 

smooth variety (Y,P). Let C be a germ of irreducible curve embedded in (S, P) and 

%’ the minimal constellation for C in (S, P). Then, following the notation in 1.11 and 

1.12, we obtain the following result. 

2.9. Lemma. Given a point fi in %, if (ei)’ = (eil,. . . , +,) are the orders of C at P;., 
then we have 

multr:(-6’-‘) = E*.C = 2i.C = -(@‘A&. 

Proof. Given a curve embedded in a nonsingular variety, the multiplicity of this curve 

at a closed point P’ is the intersection product of the strict transform of the curve with 

the exceptional divisor of the blowing up of P’. Therefore, the first equality holds. 

The other equalities follow from the facts that [ET.& = Zi and Ez. ETk, = 0 whenever 

ifi’. 0 

2.10. Theorem. Let C and C’ be two equisingular germs of reduced curves in (S, P). 

Then, they are equiresoluble. 

Proof. Let % (resp. 5%‘) be the minimal constellation for C (resp. C’) in (S,P) and 

{eyly (resp. {eh),) th e orders of C in V (resp. of C’ in %“). There exist enumerations 

o and w’ of Aq and Aqt, respectively, such that IV&, = A~w,~,, /iv, = AQ,~, and 

e = e’. Call these data (M,A,e) and let 4 = -A&. In this way, if {EY}? and {El}? 
are the irreducible components of the exceptional locus of rcq and rc~ respectively 

then, for each y, d, is the number of analytic irreducible components of C (resp. C’) 

whose strict transform intersects EY (resp. E;). 

From the matrices A4 and A we deduce the tree y associated to both %’ and W. In 

fact, the number of vertices of y is the number of nonzero boxes in A and the matrix 

A4 define the structure of tree (see 1.8 and 1.12). The d,‘s determine the number of 

branches of both C and C’ and its relative situation in 5. Therefore, since the m- 

weights of the equiresolution classes consist of a weight funtion for each branch, we 

may suppose, without loss of generality, that both C and C’ have only one branch. 

Now, we compute the integers {p,,}? from the matrices M and ,4 as in 1.15, obtaining 

that the pr’s are the same for both %? and %?. Therefore, Lemma 2.9 guarantees that, 

if Pi and P/ are the points of Q? and %? corresponding to a vertex ai in 5, then 

mult~(?’ ) = mult~~(?-' ), that is, the m-functions defined by C and C’ in y 

coincide. Moreover, since C and C’ are irreducible, there is a unique branch 9 of 9 

for which the m-weights are nonzero. The tree yd obtained erasing the vertices of y-’ 

for which the multiplicity is 1 is the tree associated to the constellations %?a and %& 

defining the normalizations of C and C’. Thus, to compute the equiresolution class of 

both C and C’, we consider &’ together with the m-function restricted to y{, and we 

add a final vertex with multiplicity 1. Therefore, the equiresolution classes of C and 

C’ coincide. 0 
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Fig. 4. Fig. 5. 

2.11. Remark. In the proof of the preceding theorem, we have computed explicitly the 

equiresolution class of a curve C embedded in (S,P) from the equisingularity class of 

C in (S,P). However, the converse to Theorem 2.10 is not true, as we show in next 

example. 

Let (S,P) be a rational double point of type A3 and consider the minimal constella- 

tion Ce, = {Pl,Pz} and the constellation %? = {PI, P2,Ps) defined in 2.5. Let C (resp. 

C’) be a germ of irreducible curve in (S,P) whose strict transform intersects transver- 

sally E2 (resp. E3). In the same way as in 2.5, C and C’ are obtained by projecting a 

suitable algebroid curve in SW. The minimal constellations for C and C’ in (S, P) are, 

respectively, %?,,, and %? and their equisingularity classes in (S,P) are shown in Figs. 4 

and 5. 

Therefore, C and C’ are not equisingular in (S,P). However, following the process 

described in the proof of 2.10, we deduce that both C and C’ are nonsingular curves 

and hence, they are equiresoluble. 

3. Minimal system of generators of a complete ideal 

In this section we obtain a formula to calculate the minimal number of generators 

of an m-primary complete ideal I of the local ring R = cOs,p of a rational surface 

singularity (S, P), generalizing the formula given by Hoskin and Deligne when (S, P) 

is nonsingular. We also give an algorithm to describe a minimal system of generators 

of I, which is a generalization of the procedure of Casas [5]. 

3.1. Definition. A cluster of points infinitely near P (or cluster with origin at P) is 

a pair K = (%‘, {v~,}~~A~) where %? is a constellation with origin at P and the vp’s are 

nonnegative rational numbers in such a way that the sequence (vi1 , . . . , vis, ) is associated 

to the point P; of %?. We call this sequence the virtual orders of K at fi and we call 

the constellation %? the support of K. 

3.2. Remark. To each germ of reduced curve C in (S,P) we may associate a cluster 

K(C) = (‘37,~) where %’ is the minimal constellation for C in (S, P) and {eY}? are 

the orders of C in %. If C and C’ are two germs of reduced curves in (S,P) such 

that K(C) = K(C’), then they are equisingular in (S, P). However, the converse is not 

true. For example, let C (resp. C’) be a germ of irreducible curve in a double point 

of type A3 whose strict transform by the minimal desingularization of A3 intersects 

transversally El1 (resp. Etz), then C and C’ are equisingular in (S,P) but K(C) is 

different from K( C’). 
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3.3. Definition. Let K = (W,!) be a cluster with origin at P. We consider the Q- 

Cartier divisor on SW defined by DK := C, vyEy*. Given an effective Weil divisor C 

on (S,P), we say that C goes through K if and only if C* > DK (i.e. C* - DK is 

effective) where C* is the total transform of C by IQ. We say that C goes through K 

with effective orders equal to the virtual ones if and only if the orders of C in %? are 

{v?}~, or equivalently, if C* = c + DK where ?? is the strict transform of C by 7ty. 

The set of effective Weil divisors on (S,P) going through a given cluster K defines 

a family of cycles in (S,P). Analogously, we may consider the Cartier divisors going 

through K and define the following ideal of R: 

ZK := (0) U {h E R - {O}/the divisor (h) goes through K}. (8) 

That is, 1~ is the stalk at P of (me),(Os,(-DK)), i.e. the set of all h E R such that the 

Q-Cartier divisor (h)* - DK is effective. Thus, it is a complete (i.e. integrally closed) 

and m-primary ideal, where m is the maximal ideal of R. 

Conversely, let us associate a cluster to each m-primary complete ideal. 

3.4. Definition. Let 1 be an m-primary complete ideal of R. Let % be a constellation 

with origin at P such that the sheaf I0 sW is invertible, and Dt the divisor on SW such 

that IOs, = cOs%(-Dt). The divisor Dt has exceptional support for the desingulariza- 

tion req. Moreover, since I is finitely generated and the orders in +? of any effective 

Cartier divisor (h) are nonnegative rational numbers, we have Dt = c, vyEF for some 

nonnegative rational numbers {v~}~. We define the cluster Kt with support in % asso- 

ciated to Z to be Kt = (V, {v,},). By the completeness of I, we have I = ZK,, i.e. I is 

the stalk at P of (za),(Os,(-Dt)) ([14, Proposition 6.21). 

Note that, if ‘@ is another constellation such that rtq~ factorices through Sq, then 

Au c Aw~l and the cluster with support in ‘X’ associated to Z is (%‘, {~;}~~4,, ) where 

VI = vy if y E AW and vi = 0 otherwise. 

In fact, if K = (59,~) is the cluster with support in %? associated to I, then {v~}~~A~ 

are the orders in %’ of the Cartier divisor defined by a generic element of I and hence, 

there exist effective Cartier divisors going through K with effective orders equal to 

the virtual ones. Conversely, let us show that this condition characterizes the clus- 

ters K which are associated to some complete ideal. The following proposition is a 

generalization of the geometric theory of Enriques. 

3.5. Proposition. Given a cluster K = (%?,I) with origin at P, the following conditions 

are equivalent: 

(i) DK is a divisor on SW and DK.E, < 0 for all y f Av. 

(ii) There exists an eflective Cartier divisor C on (S,P) going through K with 

effective orders equal to the virtual ones. 

(iii) There exist Cartier divisors as in (ii), and the only points infinitely near P 

through which all these Cartier divisors go are the points in V. 

The clusters K satisfying the above conditions are called Cartier clusters. 
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Proof. (iii) + (ii) is obvious. To prove (ii)+(i), let C be a Cartier divisor satisfying 

(ii). Then C* = c + DK and hence, DK is a divisor and DK . EY = -c.E, I: 0 for all 

y. Now, suppose K is a Cartier cluster, then d, = -DK . E, is a nonnegative integer. 

For every y, we take d, nonsingular irreducible algebroid curves in SV transversal to 

EY and not intersecting any of the EOL’s, for GI # y. We consider the union d of these 

curves and the divisor on SW given by D’ = B + DK. For any y, D’ .E,, = 0 and 

hence, 1.1(b) guarantees the existence of an element h E R such that (A)* = D’. The 

Cartier divisor C on (S,P) defined by h goes through K with effective orders equal to 

the virtual ones. If a different choice 6’ of the algebroid curves in SW is made, then 

we obtain a new Cat-tier divisor C’ on (S,P) going through K with effective orders 

equal to the virtual ones and such that the unique points infinitely near P on the strict 

transforms of C and C’ are the points of %. 0 

3.6. Corollary. Given a constellation $9 with origin at P, there is a one to one cor- 
respondence between m-primary complete ideals I of R such that the sheaf IcOs* is 
invertible and Cartier clusters with support in V. 

Proof. It follows from 3.5 because, given a Cattier cluster K = (%,x), DK is a divisor 

on SW and K is the cluster with support in % associated to the complete ideal defined 

by the stalk at P of (Q)*(O~~(-DK)). q 

Now, given an R-module M, we denote by e(M) the length of M as R-module. Given 

an ideal I of R, the colength of I is denoted by {(R/I). The following proposition will 

be used to compute the minimal number of generators of an m-primary complete ideal 

in terms of its associated cluster. 

3.7. Proposition. Let I be an m-primary complete ideal of R. Let % be a constellation 
with origin at P such that IOsq is invertible, K = (%Y,Y) the Cartier cluster with 

support in %? associated to I and D = DK the corresponding divisor. If Ks, is a 
canonical divisor on SW, and M and A are the proximity and intersection matrices 
of %? with respect to some enumeration of Aq, then 

t(Rp) = -;D.(D + KS,) = -;$A? + $~-l(i + ;(EY.~Y))Y. (9) 

Proof. Since (S,P) is a rational surface singularity, we have QR/Z) = h”(&, On) = 
X(Sb) (see [14, Lemma 23.11). Therefore, the first equality in (9) follows from the 

adjunction formula. Besides, D.D = $AY and, for each y, E,.Ks, = -2-(E,.E,). Writ- 

ing D in terms of the Er’s by the change of basis given by M, we reach equality (9). 

3.8. Remark. When (S,P) is a germ of nonsingular surface, A = -Id and Er.Ei = 
-1 - cj_i 1, that is, 2 + (Ei.Ei) is the sum of the elements of the ith row of M. 
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Therefore, if K = (%Y, {Vi}i) is the cluster with support in %? associated to I, then 

/(R/I) = i Ci(v” + vi). In fact, this is the formula given by Hoskin and Deligne 

in [lo, Theorem 5.1; 6, Theorem 2.131. 

3.9. Corollary. Let (S,P) be a rational double point and %Y,,, a minimal constellation 

for (S,P). Let I be an m-primary complete ideal of R such that IcOs%, is invertible 

and let K = (G&x) be the cluster with support in G$,, associated to I. Then, 

&(R/Z) = +A~, 

where A is an intersection matrix defined by %,,,. 

(10) 

Proof. In the above conditions, E,.E, = -2 for all y (see [l]). Applying this to the 

right-side member of (9) we obtain equality (10). 0 

3.10. Theorem. Let I be an m-primary complete ideal of R. Let 5% be a constellation 

with origin at P such that IOsW is invertible, Z the fundamental cycle for the morphism 

IQ and D = DK the divisor on SW associated to I. Then, the minimal number of 

generators u(I) of I is given by 

u(Z) = /(@I) = -D.Z + 1. (11) 

Moreover, tf K = (%?,v) is the Cartier cluster with support in %7 associated to I and 

Z = C”,l, plkE,*,, then 

~(1) = 1 - c VW,,(E,*~.EI”,). 
1 <k,r<s, 

(12) 

Therefore, u(I) only depends on the orders (VII,. . . , vls, ) of the origin of K. In fact, 

u(I) = 1 + multp(C) where C is the Cartier divisor defined by a generic element 

of I. 

Proof. By Nakayama’s lemma, given xi,. . . ,x, elements of I, they are a minimal 

system of generators of Z if and only if its classes {Xi,. . . ,X,} in I/ml are a ba- 

sis of the k-vector space I/mI and hence, p(Z) = dimk(r/ml) = 8(1/W). Since 

D + Z is the divisor on Sq associated to the complete ideal ml, applying 3.7 we 

obtain 

p(Z) = e(Z/ml) = QR/mZ) - /(R/I) = -D.Z - ;Z.(Z + Ks,), 

where Ks, is a canonical divisor on SW. Since pa(Z) = 0, we have Z.(Z + Ks,) = -2 

and (11) is proved. Equality (12) follows from (11) since D = C vyET, and the last 

assertion is consequence of Lemma 2.9. 0 

3.11. Remark. If (S,P) is a germ of nonsingular surface and I is an m-primary com- 

plete ideal of Lo,,, then Z = E: and ~(1) = vi + 1, where vi is the multiplicity of I 

at P (see [ll, Theorem 2.11). 



A.-J. RegueraIJournal of Pure and Applied Algebra 122 (1997) 107-126 123 

3.12. Corollary. Let (S,P) be a rational double point. Let K = (%?,v) be a Cartier 

cluster with origin at P and IK the complete ideal defined by K. Then, the minimal 

number of generators of Ik is given by 

~11 + ~12 + 1 if (XP) is of type A,, (n 2 2) 

P(IK) = 2Vl + 1 if (S, P) is of type Al, 

v1 + 1 if (XP) is of type D, (n 2 4),E6,E7 or E8. 

Proof. If (S,P) is an A,-singularity (n 2 2), then the exceptional locus of the blow- 

ing up with center P has two irreducible components E:, and E:2. Besides, for any 

constellation V, the fundamental cycle for the desingularization atv is 2 = EFi + EF2 

and we have E,*, .E,* = E;“2.EFz = -n/(n - 1) and E,*, .EF2 = l/(n - 1). Therefore, 

the orders of K at the origin are a pair (vii,vi2) and p(k) = vi1 + vi2 + 1 in this 

case. Analogously, a Cartier cluster K on an Al-singularity has only one order vi at 

the origin, and the fundamental cycle for 7zy is Z = Er where E: .E: = -2, therefore 

I = 2vi + 1. Finally, if (S,P) is a singularity of type D, (n 2 4), Eg, ET or Es, 

then the exceptional locus of the blowing up with center P has only one irreducible 

component and, for any constellation %?, the fundamental cycle for rry is Z = 2E,* 

where E: .EF = - i. Therefore, a Cartier cluster K on (S, P) has one order vi at the 

origin, and I = vi + 1. 0 

Now, let K be any cluster with origin at P. We will give an algorithm to describe a 

minimal system of generators of the complete ideal 1~. First, let us prove a preliminary 

result which is a generalization of Laufer’s procedure to compute the fundamental cycle 

[12, Proposition 4.11. 

3.13. Lemma. Let V be a constellation with origin at P and D = ,&, byEr a Q- 

Cartier divisor on SW. Then, among all the exceptional divisors D’ on SW such that 

D’ > D and D’.E,, 5 0 for all y, there is a minimal one 0. 

We can compute D in the foliowing recurrent way. Let D, = C, b;EY where bi is 

the smallest integer such that bi 2 b,. Having dejined Di, zf D,.E, 5 0 for all y, then 

D = Di. Otherwise, we take yt such that D,.E,, > 0 and we set D,+l = Dt + E,,. 

Proof. Let 9 be the set of divisors D’ on & with exceptional support such that D’ > D 

and D’.E, < 0 for all y. If Z is the fundamental cycle for 71~ then rZ E 9 for r >> 0 

and hence, 9 is nonempty. Besides, let 0; = C, c;E, and 0; = C, c;E? belong to 

9, and let D’ = c, crE7 where cY = inf {ci, c:}. Fixed y, let us suppose c: 5 cf, then 

D’.EY = c;(E,.E,) + &, c,(E,.E,) 5 D{.E, 5 0 and, since D’ 2 D, it follows that 

D’ belongs to 9. Therefore, there exists a minimal element 0. To prove the second 

assertion, it is enough to show that the divisors Dt defined recurrently from D satisfy 

Dt 5 0. It is clear that D1 < 0. Suppose that D, < D, then D,+, = Dr + EYr where 

(D - Dt).EY, < 0. Thus, the effective divisor D - Dt contains EY,, i.e. Dt+l 5 0, and 

the lemma is proved. 0 
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3.14. Let K = (%?,v) be a cluster with origin at P. Let us apply the preceding pro- 

cedure to the Q-Cartier divisor DK. The divisor D so obtained satisfies D.E, 5 0 for 

all y and hence, the argument in the proof of 3.5 insures that, in the expression D = 

C, v$!?T of D in terms of the ET’s, the rational numbers {v;}~ are nonnegative. Thus, 

it follows from the definition of D that the cluster KO = (%,x0) is the unique Cattier 

cluster with support in % such that I ~~ = 1~. We call it the Cartier cluster induced 

by K. 

Let K’ be the cluster associated to the complete ideal dK, that is, K’ is the cluster 

with support in %? whose virtual orders at the points of %? different from P are the 

virtual orders {vi} of KO and whose orders at P are {vG + plk}sk’,, . Let us construct 

a sequence of Cartier clusters {K,}:=,, where Y is the minimal number of generators 

of ZK, such that K, = K’. We define inductively Kr+l from Kl in the following way: 

“Let K1 = (%$,$) and K’ = (+& 2’) where %‘t is a constellation which is a common 

support of Kt and K’. We fix an enumeration of the set of indices A% and we choose 

E, exceptional on Sg such that v’, < vk and vb = vb for all /I < a (since ZK~ c ZK, there 

exists such an E,). We take a point Qt E E, such that Qr $! Eg for p # c1 and consider 

the cluster K;+, = C&u{Qt>,{~~)y~~y U{l>>. Then, K ,+I is the Cartier cluster induced 

by K:+,, which is obtained applying Lemma 3.13.” 

3.15. Theorem. The preceding algorithm constructs a sequence {K,}~=, of Cartier 

ch.Mers such that I& = I,, K, is the &ster associated to the complete ideal tiK 

and, for each t, IK,+, c IK, and /(IK,/IK,+, ) = 1. If, for each t, we take h, E IK,\IK,+, , 
then {h,}rzi is a minimal system of generators of the ideal IK. 

Proof. It is clear that the algorithm finishes after a finite number of steps. Besides, by 

the definition of K,+l we have IK,,, = ZK;+, c IK,. Moreover, IK,/IK,+, is isomorphic to 

OS,.Q,~S~,Q, and hence, ~IK,/~K,+,) = dim(@s,,Q,/ms,,~,) = 1. Thus, r = f(lK/mlK) 

is the minimal number of generators of 1, and the theorem is proved. 0 

3.16. Remark. Since e(Z~,/l,,+,) = 1 and both Kt and K,+l are Cartier clusters, we 

can take the element hf in IK, \IK,+, in such a way that the Cattier divisor Ch, defined 

by h, goes through Kr with effective orders equal to the virtual ones and such that 

the constellation %?* support of Kt gives rise to an embedded desingularization of Ch, 

in (S,P). Therefore, the algorithm to compute the sequence {K,};=, determines the 

equisingularity classes of the curves {Ch,}t. 

3.17. Example. Let (S,P) be a rational double point of type A3 defined by xy+z4 = 0 

in a neighbourhood of the point P = (0, 0,O) in k3. Let %,,, = {P,, Pz} be the minimal 

constellation for (S,P) (see 2.5) and K the cluster with support in V,,, whose orders 

are (l,$) at PI and $ at P2. We have DK = El, + iE12 + 2E2 and hence, K is 

not a Cartier cluster. We apply Lemma 3.13 to DK and we obtain the Cartier cluster 

KO = (‘%;n, ((1, I), 1)) induced by K. Thus, Corollary 3.12 insures that the minimal 

number of generators of the complete ideal IK = I& is r = 3. 



A.-J. Reguera I Journal of Pure and Applied Algebra 122 (1997) 107-126 125 

The Cartier cluster K’ = K3 is obtained from KO by adding the orders (1,l) at the 

origin, i.e. K3 = (%&,{(2,2), 1)). T o construct KI, we observe that vyi = 1 < 2 = vi,. 

We consider a closed point Qo E El1 such that Qs $! E12, E2, and the cluster Ki with 

support in %& U {Qo} w h ose weights are {( 1, 1 ), 1, 1 }. After applying Lemma 3.13, 

we obtain the Cattier cluster K1 induced by Ki. In fact, KI = (%& {(2,1), i } ) and 

the element ho of R defined by y belongs to IKE \ ZK,. Analogously, to compute K2 

we observe that vf2 = 1 < 2 = vi2 and, applying the same method, we obtain the 

Cartier cluster K2 = (%&, {(2,2), 0)). The class hl of x in R belongs to ZK, \ Z,, and 

the element h2 defined by z2 belongs to ZK, \ZK, . Therefore, { y,x,z2} define a minimal 

system of generators of the complete ideal ZK. 
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